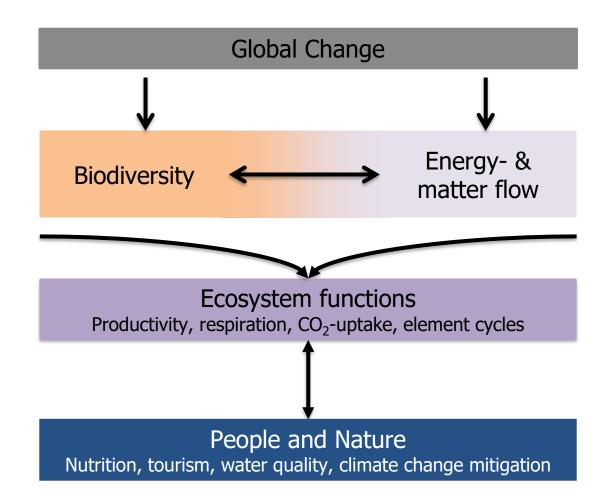


Marine Biodiversity, ecosystem research and ecosystem services


Helmut Hillebrand Institute for Chemistry and Biology of the Marine Environment Carl-von-Ossietzky University Oldenburg

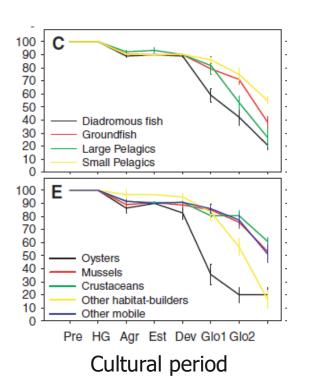
... has advanced from discovering species and understanding their occurrence...

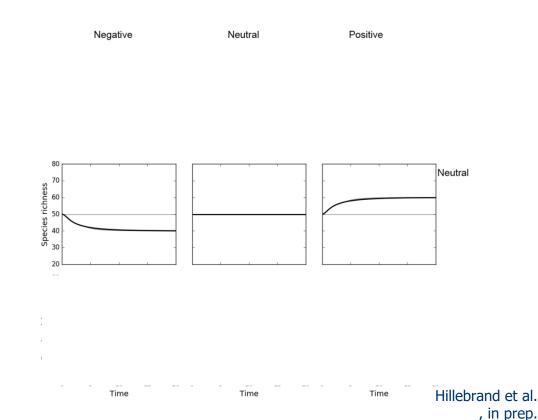
... has advanced from discovering species and understanding their occurrence...

... towards seeing biodiversity as an integral component of ecosystem research.

... faces fundamental knowledge gaps (a.k.a. "challenges")

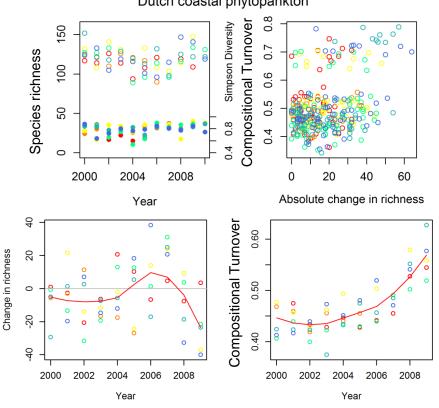
Rough timeline	Framing of conservation	Key ideas	Science underpinning		
	0961 0261 0261	Species Wilderness Protected areas	Species, habitats and wildlife ecology	•	Uncertainty of marine biodiversity estimates
	000 Nature despite people	Extinction, threats and threatened species Habitat loss Pollution Overexploitation	Population biology, natural resource management	•	Insecurity about trends Unclear functional
	Vature for people	Ecosystems Ecosystem approach Ecosystem services Economic values	Ecosystem functions, environmental economics		diversity in marine ecosystems
	People and nature	Environmental change Resilience Adaptability Socioecological systems	Interdisciplinary, social and ecological sciences		


... faces fundamental knowledge gaps (a.k.a. "challenges")


	Mountains, moors, heaths		Enclosed farmland		Semi-natural grassland		Woodsland		Freshwaters			Urban			Coastal margins			Marine						
	Qun	Qua	Spa	Qun	Qua	Spa	Qun	Qua	Spa	Qun	Qua	Spa	Qun	Qua	Spa	Qun	Qua	Spa	Qun	Qua	Spa	Qun	Qua	Spa
Food																								
Fibre																								
Energy																								
Clean water																								
Cleand air																								
Recreation																								
Aesthetics																								
Hazard protection																								
Wildlife																								
Equable climate																								
Mace, J A	ppl	Ecol	2015	5					Sta	tus g	jood,	trer	nd 0/	+	St	atus	bad,	tren	d -					

Challenges: predicting biodiversity change

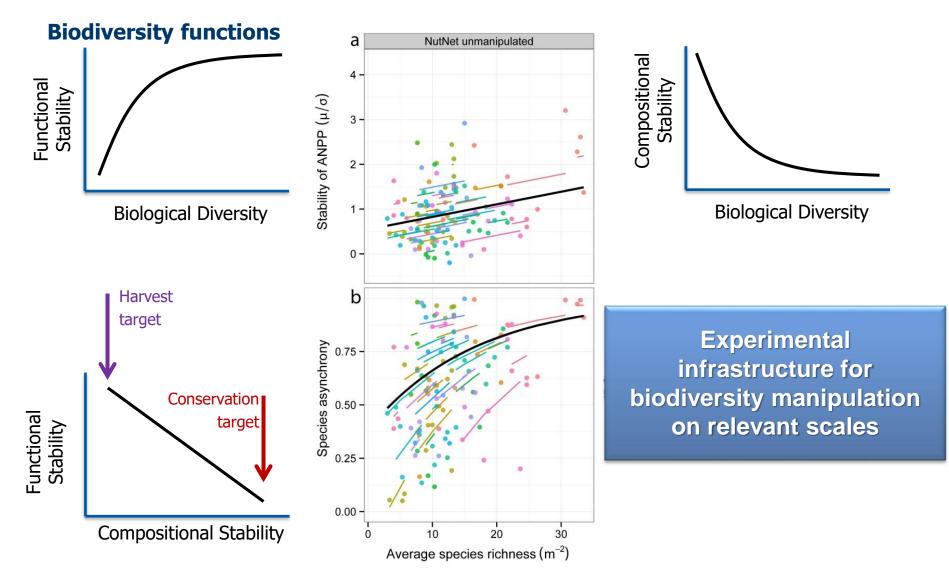
- We have good indications that globally biodiversity declines in marine ecosystems over longtime scales
- But we lack this knowledge for the relevant local scale
 What is the null expectation for a change in local richness if habitat quality improves or deteriorates?


Challenges: predicting biodiversity change

- But we lack this knowledge for the relevant local scale

What is the null expectation for a change in local richness if habitat quality improves or deteriorates?

Infrastructure for high throughput molecular techniques & bioinformatics


Infrastructure for long-term biodiversity observation

Theory underpinning for assessment analyses

Hillebrand et al. , in prep.

Challenges: biodiversity & stability

Hautier et al. 2014 Nature

Summary

Infrastructure

Theory underpinning for assessment analyses

Infrastructure for high throughput molecular techniques & bioinformatics

Infrastructure for long-term biodiversity observation

Experimental infrastructure for biodiversity manipulation on relevant scales

Tasks

Strengthen university biodiversity education Foster joint projects with theory, ecology and evolutionary biology in the marine sciences Improve access to and usage of [meta]-omics Integrate bioinformatics and data storage into research projects

Secure finances for existing and novel long-term observations

Develop autonomous biodiversity sampling and analysis procedures

Establish and maintain versatile mesoscale experimental infrastructure

Create experimental facility networks